Российские учёные впервые создали сверхпроводящий кубит

Оборудование, на котором был изготовлен первый российский кубит

Оборудование, на котором был изготовлен первый российский кубит
(фото Ivan Khrapach/RQC, MIPT, MIS&S, Institute of Solid State Physics).

Кубит под электронным микроскопом с увеличением в 16 тысяч раз

Кубит под электронным микроскопом с увеличением в 16 тысяч раз
(фото Ivan Khrapach/RQC, MIPT, MIS&S, Institute of Solid State Physics).

Оборудование, на котором был изготовлен первый российский кубит
Кубит под электронным микроскопом с увеличением в 16 тысяч раз
Объединённая команда из ведущих российских физико-технических институтов создала первый для нашей страны сверхпроводящий кубит. Этот элемент станет основным составляющим будущих квантовых компьютеров, которые смогут превзойти самые мощные современные суперкомпьютеры.

Учёные Российского квантового центра, Лаборатории искусственных квантовых систем МФТИ, МИСиСа и ИФТТ РАН создали первый в России сверхпроводящий кубит — основной элемент будущих квантовых компьютеров, которые смогут превзойти самые мощные современные суперкомпьютеры.

"Это важный шаг, необходимый для создания квантовых вычислительных устройств, которые в будущем произведут революцию в области вычислительной техники", — говорит генеральный директор РКЦ Руслан Юнусов.

Квантовые биты или кубиты — главный составной элемент будущих квантовых компьютеров. Они работают благодаря эффектам квантовой физики, в частности, эффекту квантовой суперпозиции, позволяющему частице (тому самому квантовому биту) принимать различные значения ("0" и "1") одновременно. Как считают учёные, квантовые компьютеры позволят совершить следующий большой скачок в области вычислений.

Поясним. Элементы классических компьютеров могут хранить только один бит ― "1" или "0". Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно логическую единицу и ноль, что создает принципиально новые возможности для обработки информации. Компьютер на нескольких тысячах кубитов может легко превзойти мощнейшие современные суперкомпьютеры в решении целого ряда вычислительных задач.

В роли кубитов могут выступать атомы или электроны, данные в этом случае "кодируются" в их спине. Однако, проблема в том, что такие кубиты крайне неустойчивы к внешним воздействиям, их состояние легко разрушается из-за внешних "шумов". Процедура считывания и записи информации на них крайне сложна, как и ловушки, которые используются для их хранения.

В начале 2000-х годов учёные обнаружили, что можно создавать "искусственные атомы", которые ведут себя в соответствии с законами квантовой физики, но значительно проще в использовании.

Одни из таких объектов — джозефсоновские контакты, состоящие из двух сверхпроводников, разделённых тонким слоем диэлектрика. Электроны благодаря квантовым эффектам могут "просачиваться" сквозь диэлектрик вследствие эффекта квантового туннелирования.


Кубит под электронным микроскопом с увеличением в 16 тысяч раз
(фото Ivan Khrapach/RQC, MIPT, MIS&S, Institute of Solid State Physics).

Как отмечается в пресс-релизе МФТИ, кубиты, построенные из нескольких джозефсоновских контактов, ведут себя как атомы. Они могут находиться в основном и возбужденном состоянии, излучать и поглощать фотоны. Такие кубиты могут быть созданы с помощью существующих методов литографии, на которых основано современное производство микросхем.

Теперь группа учёных из российских физических институтов, работающая под руководством Олега Астафьева из МФТИ, Алексея Устинова из РКЦ и Валерия Рязанова из ИФТТ, впервые создала сверхпроводящий кубит в российской лаборатории.

Созданные исследователями кубиты состоят из четырёх джозефсоновских контактов на "петле" размером в один микрометр. Контакты сконструированы из алюминиевых полос, разделённых слоем диэлектрика (оксида алюминия) толщиной около двух нанометров. Учёные прозондировали устройство микроволновым излучением и определили, что его свойства соответствуют заданным теоретическим параметрам.

"Мы создали инструмент, средство для проведения дальнейших исследований в области квантовых вычислений. С его помощью мы сможем достичь научных результатов, которые пока не получал никто в мире", — отмечает Олег Астафьев.

"Наша работа свидетельствует о том, что в России теперь есть технологии и команды учёных, которые могут включиться в мировую гонку построения квантовых компьютеров", — считает Алексей Устинов.

У учёных пока нет единого мнения относительно того, сколько времени понадобится на создание готового к практическому использованию квантового компьютера. Но, по оптимистичным прогнозам, первый работающий образец можно ожидать уже через 5-10 лет.